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Accomplishments: The list below summarizes the research accomplishments of the Central-East 

Regional Biomass Research Center related to the development of perennial grasses for dedicated 

bioenergy feedstocks between 2010 and 2014. The accomplishments are summarized by ARS 

location. 

 

Grain, Forage, and Bioenergy Research Unit, Lincoln, NE (NP215) 

Project Title:  Improving bioenergy and forage plants and production systems for the central U.S. 

Project Nos:  5440-21000-030-00D and 5440-21220-027-00D 

 

Switchgrass grown for biomass energy results in significant soil carbon (C) sequestration. 

A long-term switchgrass soil C sequestration study was established in eastern Nebraska in 1998 

by ARS scientists at Lincoln, NE and Ft. Collins, CO. The study includes two switchgrass 

cultivars, three nitrogen (N) fertilizer rates and two harvest treatments. In the 9-year period from 

the spring of 1998 to the spring of 2007, soil C increased at rate of 0.9 U.S. tons/acre per year in 

plots in which best management practices were used. Biomass yields and C sequestration was 

significantly greater in plots in which N fertilizer was used than in plots where no fertilizer was 

applied. These results fully support switchgrass soil C sequestration data previously obtained in a 

5-year study on 10 farms in NE, SD, and ND. In the on-farm study conducted by ARS scientists 

at Lincoln, NE and Mandan, ND, additional soil analyses has shown that switchgrass biomass 

production and harvest resulted in very small changes in available soil phosphorus (P). Soil P 

decreased by only 1.3 lbs per acre of available P per year. 

 

Herbicides used for establishing switchgrass in the mid-continental USA improve 

establishment success and accelerate biomass production for bioenergy. Weeds limit 

switchgrass establishment from seed, but few herbicides are labeled for switchgrass 

establishment. Selected herbicides were tested on stand establishment and subsequent yields of 

adapted upland switchgrass cultivars in Nebraska, South Dakota, and North Dakota as well as 

lowland ecotypes in Nebraska by ARS scientists at Lincoln, NE and Mandan, ND. Applying 

quinclorac plus atrazine resulted in acceptable stands and high yields for all locations and 

ecotypes. Quinclorac and atrazine is an excellent combination for establishing switchgrass in the 

mid-continental USA. With good management including the use of herbicides, switchgrass can 

produce yields equivalent to half of full production the establishment year and can be at full 

production the year after planting. This research contributed to the labeling of quinclorac for 

establishing switchgrass for bioenergy in this region and is available for use by farmers. 

 

Improved real-time assay for plant O-methyltransferases. Plant O-methyltransferases are key 

enzymes in plant metabolism and play a crucial role in the generation of intermediates during 

lignin biosynthesis. Earlier assays for these enzymes, and ones specifically involved in lignin 

biosynthesis were cumbersome and/or involved the use of radioactive substrates. A new method 

developed by ARS scientists at Lincoln, NE relies on fluorescence as a means to detect and 

quantify the activity of these enzymes. This new assay can be used in genetic studies to modify 

lignin composition of biomass which can affect its conversion to liquid fuels. 

 



Improved switchgrass seed quality tests improve establishment and initial biomass yields. 

The economic viability of growing switchgrass for bioenergy hinges on successful stand 

establishment during the seeding year. ARS-Lincoln scientists developed an innovative seed lot 

evaluation test that is based on the number of emerged seedlings per gram of seed in a stress test 

rather than the percentage of seeds that germinate in a germination cabinet.  Using this new test 

instead of the conventional Pure Live Seed method to determine planting rates resulted in 

significantly better switchgrass stands and greater biomass yields the first harvest year.   Basing 

switchgrass seeding rates  on emerged seedlings per gram with an associated stress test will 

reduce the risks of failure during the stand establishment year due to poor seed quality  and will 

improve biomass yields for the initial harvests. 

 

Field and year-to-year variation in switchgrass biomass quality and its effects on ethanol 

yields per ton and production per acre were quantified.  Theoretical ethanol yields were 

determined from biomass harvested from 10 farms in Nebraska and South and North Dakota for 

a five year period.  Near Infrared Reflectance Spectroscopy (NIRS) calibrations developed by a 

team of ARS scientists from Lincoln, NE, St. Paul, MN, Peoria, IL, and Madison, WI were used 

to determine composition and predict ethanol yields. Theoretical ethanol yield varied by year and 

field, with 5 year means ranging from 91 to 103 gallons per ton of biomass. Total theoretical 

ethanol production ranged from 187 to 394 gallons per acre across fields planted to forage type 

switchgrass cultivars. Because of the differences in potential liquid fuel yields per ton, cellulosic 

biorefineries will need to assess switchgrass quality using a suitable technique such as the NIRS 

calibrations developed by ARS. Cellulosic biorefineries will need to consider the yearly variation 

that can occur in biomass production in a region in their business plans. 

 

Long-term switchgrass soil carbon sequestration study indicates assumptions used in 

previous bioenergy net benefits modeling are erroneous.  The changes in soil organic carbon 

during the first nine years of a long-term switchgrass and corn soil C sequestration study indicate 

that all soil C changes were positive and that nitrogen fertility rates and harvest management 

affected the net increase in soil carbon.  ARS scientists at Lincoln, NE and Ft. Collins, CO 

demonstrated that both switchgrass and corn sequestered soil organic carbon (SOC) down to a 

depth of 5 feet and over 50% of the soil organic C was sequestered below the one foot depth 

which is the soil depth most previous modeling work is based. Both switchgrass and corn 

sequestered 0.9 tons of C per year with the best management practices.  The results demonstrate 

that previous modeling work on the net benefits of bioenergy crops which were conducted 

assuming uniform responses to management and a shallow one foot soil sampling depth for soil 

carbon are likely erroneous. 

 

 

Improved knowledge of autumn dormancy and spring-greening of perennial grasses.  

Molecular mechanisms controlling winter-hardiness and survival could be exploited to accelerate 

improvements of lowland switchgrass cultivars if they were clearly understood. ARS scientists at 

Lincoln, NE have developed the first insights into the metabolism of crown and rhizome tissues 

obtained from a winter hardy upland cultivar of switchgrass. Over 30,000 new DNA sequences 

coding for several genes that likely have an important role in winter-hardiness were obtained.  

Large datasets of DNA sequences should permit the development of molecular markers for genes 



controlling winter hardiness in switchgrass which would greatly facilitate the breeding progress 

for this economically important trait. 

 

Calibrations for switchgrass biomass composition.  Near infrared reflectance spectrometry 

(NIRS) calibrations for switchgrass biomass composition, developed cooperatively by ARS 

scientists at Lincoln, NE, Peoria, IL, St. Paul, MN, and Madison, WI, were transferred to the 

NIRS Forage and Feed Testing Consortium (NIRSC) which is an association of commercial, 

university, and government research laboratories, plant research companies, and instrument 

companies that collaborate to improve NIRS analyses methodology.  The NIRSC has transferred 

these calibration sets and associated standard samples to 19 laboratories.  The switchgrass NIRS 

calibrations enables commercial, industrial, academic, and government laboratories to rapidly 

determine 20 compositional components of switchgrass biomass. The sample cost using the ARS 

developed NIRS calibrations is approximately $5 per sample. Conventional analyses methods 

would cost over $300 per sample.  This technology will significantly facilitate the breeding and 

management research to develop perennial grasses into bioenergy crops. 

 

Improved bioenergy-type switchgrass cultivar with high biomass yield tested and increased 

for use in the northern half of the USA. Switchgrass cultivars for the northern half of the US 

have been limited to upland ecotype switchgrass cultivars because available lowland cultivars 

have poor winter survival in the region. Lowland switchgrass cultivars have the potential to 

produce greater biomass yields if they had better winter survival. A new lowland type 

switchgrass cultivar ‘Liberty’ was released in 2013. Liberty which was developed by ARS 

researchers at Lincoln, NE by crossing northern upland and southern lowland plants followed by 

three generations of breeding for winter survival, high biomass yield, and low stem lignin 

concentration. Over a three year period in trials in NE, WI, and IL, Liberty had excellent winter 

survival and in eastern Nebraska and northern Illinois had biomass yields that were 2 tons per 

acre greater than the best available released upland cultivars. Liberty is the first bioenergy type 

cultivar for the Midwest and the northern Great Plains and will likely be used in the Northeast 

states.  When processed in a biorefinery, the increased biomass yield will result in an additional 

160 gallons of ethanol per acre which could fuel an economy car for 5,000 miles. 

 

Identified a total of 342 class III peroxidase genes in the switchgrass genome. Work with 

other grasses have shown that increases in the levels of specific class III peroxidases are 

associated with improved resistance to herbivory by piercing-sucking insects.  Such information 

is unavailable for switchgrass.  In this work performed by ARS researchers at Lincoln, NE, in 

collaboration with University of Nebraska scientists, the presence or absence of all the class III 

peroxidases was documented in switchgrass tissues at different stages of plant development. 

Using these data, it is now possible to identify specific switchgrass peroxidase genes that are 

involved in the plant’s response to insect herbivory. Data obtained by these new methods can be 

used by plant breeders and other researchers to develop switchgrass strains with improved 

resistance to piercing-sucking insects. 

 

Release of elite lines incorporating brown midrib genes has provided materials for 

production of commercial hybrids.  Two genes, brown midrib (bmr) 6 and bmr12, were 

incorporated into elite germplasm, alone or in combination, in order to determine effects on 

lignin precursors, cellulosic bioenergy potential, and utility in new agricultural applications.  The 



resulting ARS-released lines have served as the basis for scientific research on bmr6 and bmr12 

throughout the world.  Research results have demonstrated the ability of hybrid vigor to 

overcome decreased yield, shown reduced disease incidence to be associated with these genes, 

and shown higher ethanol conversion and conversion efficiencies to be associated with these 

genes.  This information has thereby supported commercial efforts to develop a market for 

proprietary hybrids.  Research based on these materials has also identified changes in lignin 

chemistry and the biochemical and molecular changes responsible, leading to identification of 

targets for improvement of other bioenergy crops.  Since the first release of these materials in 

2005, over 1,200 seed packets from these lines have been distributed without charge and without 

restrictions on their use, to private companies, universities, and national labs on six continents.  

They have also provided impetus for current research on discovery and description of new brown 

midrib genes, which promises to unlock even more potential for utilization of sorghum and 

related crops for bioenergy purposes. 

  

Near-isogenic lines containing the waxy mutation and adapted to the northern sorghum-

growing region of the USA have greater digestibility for conversion efficiency to ethanol.  

The existence of multiple alleles for the ‘waxy’ (low amylose grain) trait in sorghum was 

previously discovered by this project, but the effect of these alleles on grain utility and their 

distribution in sorghum germplasm was unknown.  Four new lines containing a new allele, wxb, 

were identified.  Energy requirements for gelatinization of waxy genotypes, an indication of 

digestibility, were generally lower than for non-waxy genotypes, but considerable variation was 

shown to exist.  When grain from waxy and WT lines was screened for fungal pathogens, which 

can affect grain yield or quality, the results showed that waxy sorghum lines were not more 

susceptible to grain infections than wild-type lines.  A set of waxy/wild-type isolines, R-lines, 

A/B-lines, and another set of isolines with wxa and wxb alleles have been developed.  In addition, 

the mutations responsible for the waxy phenotype in wxa and wxb were identified and molecular 

markers were developed for both alleles to aid breeding efforts.  These sets of lines will be 

valuable germplasm for enhancing sorghum grain for conversion to bioenergy. 

 

Identification and characterization of three Bmr genes and their corresponding proteins.  

Bmr6 was cloned and shown to be an enzyme in monolignol biosynthesis, cinnamyl alcohol 

dehydrogenase (CAD).  Similarly, Bmr2 was cloned and shown to encode another enzyme in 

monolignol biosynthesis, 4-coumarate Coenzyme A ligase (4CL).  The effects of a series of new 

bmr12 alleles were characterized on plant tissue and the monolignol biosynthetic enzyme caffeic 

O-methyltransferase (COMT) encoded by Bmr12.  These studies linked phenotypes, mutations, 

protein levels and enzymatic activity together to provide a complete picture of these bmr lines.  

This information allows plant breeders to develop strategies to modify lignin content and its 

composition in sorghum, and has implications for lignin modification in other bioenergy grasses. 

 

The brown midrib genes bmr6 and bmr12 are associated with resistance to some fungal 

pathogens.  The incidences of two fungi that commonly infect sorghum grain were significantly 

reduced in bmr12 grain.  Inoculation of stalks of wild-type and near-isogenic bmr6 and bmr12 

plants with sorghum pathogens resulted in infected areas on bmr6 or bmr12 plants that were the 

same size or smaller than those on wild-type plants.  Therefore, enhancing sorghum for 

bioenergy and livestock feed using bmr6 and bmr12 does not increase disease susceptibility and, 

for some pathogens, results in increased resistance. 



 

Determined the molecular structure of a sorghum lignin biosynthesis enzyme. 

Understanding lignin synthesis is critically important for developing plants with altered biomass 

composition to be used with emerging bioenergy conversion technologies to produce liquid 

fuels. The sorghum enzyme hydroxycinnamoyltransferase (SbHCT) is a key enzyme that 

participates in an early step of lignin synthesis.  The structure of this enzyme was determined to 

understand how the enzyme functions in lignin synthesis.  The structure of SbHCT was similar to 

the structure of other enzymes found in plants.  The observations of ARS scientists from Lincoln 

NE and collaborators explain how SbHCT and other enzymes that share similar structural 

features can participate in different biochemical pathways in different plant species.  Knowledge 

of this protein structure will enable future research on modifying lignin content and composition 

of sorghum and other crops for bioenergy. 

 

Developed and evaluated sweet sorghum hybrids.  Sweet sorghum has received substantial 

attention as a bioenergy crop throughout the world, because its processing would be similar to 

sugarcane.  To generate such large quantities of seed, the commercial seed industry will need to 

produce hybrid varieties on dwarf seed-parent lines, which produce high numbers of seed and are 

amenable to mechanical harvest. The ability to produces sweet sorghum hybrids use existing 

dwarf seed-parent lines was evaluated for all traits directly contributing to total ethanol yield.  

Results of this study demonstrate that hybrid sweet sorghum with performance criteria equivalent 

to existing sweet sorghum cultivars can be produced on existing seed-parent lines. 

 

Funded Bioenergy Grants: 

1. 2009-2013: “The hunt for green every April: Factors affecting fitness in switchgrass”.  DOE-

USDA Feedstocks Genomics Program. US Department of Energy Grant Number DE-AI02-

09ER64829. PI G. Sarath. $1,181,866. 

2. 2011-2016: “Mitigating insect herbivory of warm-season bioenergy grasses - getting ahead of the 

curve”. USDA-NIFA Competitive Grants Program. NIFA Award Number: 2011-67009-30096. 

PI G. Sarath. $997,741. 

3. 2011-2012: “Micro/nanomechanical studies of switchgrass composition and cellulose breakdown 

kinetics” funded through the UNL-Energy Sciences Research, Co-PI G. Sarath. $100,000. 

4. 2007-2011: DE-FG02-07ER64458 BER-U.S. Department of Energy Grant, Genetic Dissection 

of Bioenergy Traits in Sorghum. PI: W. Vermerris Co-PIs S. Sattler and J. Pedersen. $750,000. 

5. 2011-2016: 2011-67009-30026 USDA-NIFA AFRI Sustainable Bioenergy Grant (2011-2016) 

The impacts of lignin modification on fungal pathogen and insect interactions in sorghum for 

cellulosic and thermal bioenergy. PI S. Sattler. $973,128. 

6. 2014-2017: “Heterosis, Drought and Mineral Composition in Switchgrass”. DOE-USDA 

Feedstocks Genomics Program.  PI G. Sarath. $ 1,173,924. (Pending) 

7. 2014-2017: “Exploiting natural diversity to identify alleles and mechanisms of cold adaption in 

switchgrass”. DOE-USDA Feedstocks Genomics Program.  CoPI G. Sarath. $184,000 (Pending) 

8. 2009-2104: PI: Enhancement of USDA-ARS, DOE, and Sun Grant Universities Cooperative 

Interdisciplinary Research, DOE Sun Grant Regional Feedstock Partnership; USDA-ARS 

ADODR, PI R. Mitchell $65,000. 

9. 2011-2014: Sustainable production and distribution of bioenergy for the central USA, USDA-

NIFA AFRI-CAP, 2011-68005-30411; USDA-ARS Coordinator & ADODR, Leader of 



Objectives 1-4, and Co-Director of Objective 2, Sustainable Feedstock Production Systems, Co-

PI R. Mitchell $1,573,499 to location. 

10. 2013-2015: Soil and environmental responses to dedicated bioenergy crops on marginally 

productive croplands, North Central Sun Grant Center; Co-PI R. Mitchell $94,619. 
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Accomplishments 

Secrets of switchgrass evolution revealed.  The choice of switchgrass as a national herbaceous 

model species for bioenergy feedstock development has led to an increase in the number of USA 

breeding programs from two in 1995 to 12 in 2012.  Collaborative research between ARS, The 

Samuel Roberts Noble Foundation, and the DOE Great Lakes Bioenergy Research Center 

characterized genetic diversity in switchgrass across its native range in the USA.  They 

demonstrated the existence of at least 10 distinct types of switchgrass, ranging from highly 

drought-tolerance ecotypes of the Great Plains to highly heat-tolerant types of the Atlantic 

Seaboard.  They showed that all unique types of switchgrass originate in particular regions in the 

southern USA where switchgrass survived numerous Ice Ages.  These results have significant 

implications for using a wide range of genetic and geographic diversity in many breeding 

programs and point to the distinct possibility of combining important biomass production traits 

such as late flowering, early nutrient recycling, and winter hardiness. 

 

Natural hybrids reveal pathway to increased biomass yield and adaptation of switchgrass.  

While cellulosic biomass crops are receiving considerable research attention, economic and life-

cycle analyses uniformly indicate that low biomass yield is a major factor limiting adoption and 

deployment of new cultivars.  Collaborative research between ARS, The Samuel Roberts Noble 

Foundation, and the DOE Great Lakes Bioenergy Research Center led to the discovery of the 

first documented natural hybrids between the two dominant ecotypes of switchgrass: upland and 

lowland ecotypes.  Researchers showed that natural hybrids were created during the Ice Ages 

when upland and lowland types shared the same habitats.  They demonstrated that these hybrids 

are stable, able to survive under a wide range of conditions, and capable of sexual reproduction 

and seed production.  This research forms the basis for broadening breeding programs to utilize 

natural hybrids and/or to create new high-yielding and broadly adaptive hybrids between diverse 

ecotypes of switchgrass, increasing biomass yield and adaptation across a broad landscape. 

 

DNA Sequencing platform reveals 1.4 million markers available for genomic selection.  

Genomic selection is a mechanism to conduct selection and breeding of crops directly on the 

genes of interest, using information from the entire genome of a plant.  ARS participated with the 

University of Wisconsin, Michigan State University, and the U.S. Department of Energy Great 

Lakes Bioenergy Research Center to develop a mechanism to routinely assay thousands of 

switchgrass genotypes for DNA markers that represent coding regions of 169,000 unique genes.  

This technology is currently being applied to germplasm that represents six switchgrass breeding 

in various regions of the USA.  The DNA probe set and genomic selection prediction equations 

will be made available to numerous switchgrass breeding programs in a community-wide effort 

to improve the rate of gain for increasing biomass yield of switchgrass. 

 

Late-flowering switchgrass boosts biomass production in the northern USA. Switchgrass 

populations that flower 4 to 5 weeks later than local local populations in the northern USA are 

capable of accumulating biomass through the growing season, up to the time of killing frost. It 

has been hypothesized that development of winter-hardy and late-flowering switchgrass 



populations will be an effective mechanism to increase sustainable biomass productivity of this 

species.  In collaborative efforts between Lincoln, NE and Madison, WI, two multi-location field 

experiments documented increases of up to 45% in dry biomass yield from two late flowering 

populations bred for increased biomass yield and winter survival.  One of these has been released 

as the cultivar Liberty.  The yield gains were documented at locations within USDA hardiness 

zones 3 through 5, verifying the ability of these populations to withstand severe winters, despite 

the late flowering trait. 

 

Developing late-flowering big bluestem for biomass production in the northern USA.  Big 

bluestem (Andropogon gerardii) has been largely ignored on the national scale, but has greater 

drought tolerance and potentially higher biomass yield than switchgrass.  Three late-flowering 

big bluestem synthetic populations were developed from field evaluations of germplasm 

collected through the range of big bluestem.  The populations flower 5 to 7 weeks later than local 

big bluestem in southern Wisconsin, allowing them to continue accumulating biomass through 

the growing season, up to the time of killing frost.  These populations have been planted in field 

experiments to evaluate their potential for sustainable biomass production. 

 

Optimizing management of reed canarygrass for biomass production.  Reed canarygrass 

(Phalaris arundinacea) is a cool-season perennial grass with potential as a biomass energy crop. 

It can be grown in a wide range of soils and environments and has been used as a pasture and hay 

crop for many decades. The number and timing of harvests during a growing season directly 

affect biomass yield and biofuel quality. Research demonstrated that biomass yield was highest 

for a 2-cut harvest management with first cut made on or near the summer solstice and the last 

cut made after a killing frost. Biomass that was allowed to stand over winter had much superior 

quality, especially for combustion applications, but biomass yield was reduced by up to 60% on 

average and was sometimes impossible to harvest due to snow packing. This experiment 

provides valuable information on average reed canarygrass biomass yields and quality for several 

harvest management systems. 

 

Discovery and evaluation of reed canarygrass germplasm for biomass production.  Reed 

canarygrass has been used as a forage crop for many years.  Because of its high productivity and 

its persistence, it is being considered for development as a dedicated biomass feedstock crop.  

This will require many years of intensive selection and breeding to produce new varieties with 

the required traits.  Thus, it is important to begin with the best plant materials, some of which 

were identified in this study. Wild populations had the highest biomass yield compared to 

varieties bred for forage production systems, indicating that there is considerable potential to 

increase biomass yields of this species by selection and breeding. 

 

Funded Bioenergy Grants: Grants linked to the parent CRIS Project 3655-21000-056-00D. 

1. 2008-2010. “US native grass breeding consortium to identify regional optimum biomass 

productivity on marginal lands,” U.S. Department of Energy. PI: Stacy Bonos, Rutgers 

University, Award to Michael Casler (Co-PI): $163,000. 

2. 2008-2010. “Small-scale pelletization of switchgrass for bioenergy,” U.S. Department of Energy 

and Bay Mills Indian Community. Award to Michael Casler (PI): $10,000. 

3. 2008-2013. “Develop improved big bluestem and lowland-type switchgrass germplasm for the 

northern USA,” CRADA with Forage Genetics, Inc. Award to Michael Casler (PI): $300,000. 



4. 2009-2017. “Translational research and breeding in switchgrass using maize as a model 

discovery engine,” U.S. Department of Energy, Great Lakes Bioenergy Research Center. PI: 

Timothy Donohue, University of Wisconsin, Award to research team on which Michael Casler is 

an non-funded cooperator: $2.4M. 

5. 2011-2016. “Sustainable production and distribution of bioenergy for the Central USA,” U.S. 

CAP grant from USDA-NIFA.  Award to Michael Casler (CoPI): $1.5M. 

6. 2013-2016. “Genetic control of flowering in switchgrass,” U.S. Department of Energy. Award to 

Michael Casler (PI): $377,000. 
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Bioenergy Research Unit, Peoria, IL 

Project Title:  Advanced conversion technologies for sugars and biofuels: superior feedstocks, 

pretreatments, inhibitor removal, and enzymes 

Project No:  3620-41000-133-00D 

 

Accomplishments 

1. Evaluated switchgrass fractions to determine how ethanol yield varies by anatomical 

fraction.  It was our hypothesis that targeting specific anatomical parts of switchgrass plants will 

allow for more directed breeding for biomass conversion quality.  Switchgrass samples were 

segregated into internodes and leaves.  Samples were analyzed for carbohydrates and lignin 

contents and processed using dilute-acid followed by either enzymatic release of sugars or 

simultaneous saccharification and fermentation to ethanol using commercial cellulases and 

Saccharomyces yeast.  Results for the sheath and internodes were highly correlated with Klason 

lignin contents, however, the leaves gave higher than expected ethanol yields.  The hypothesis 

was confirmed using a set of switchgrass grass cultivars bred for increased forage quality; higher 

conversion quality using our fermentation assay was detected for stems only but not whole 

plants.  This last result is included for a manuscript in preparation and the earlier result has been 

presented at meetings.    

2.  

3. Evaluated five warm season perennial forage grasses for sugar yields.  This was a project led 

by Dr. John Read (USDA-ARS, Crop Science Research Laboratory, MS State, MS).  Dr. Read 

earlier conducted a field study that compared 5 grass hay crops for manure-nutrient management 

in a swine effluent spray field.  All five perennials were evaluated at various cuttings to select the 

most promising for ethanol production.  This study included the development of a novel 

conversion assay suitable for small sample sizes.  Results are being presented at a USDA co-

sponsor workshop. 

4. Evaluated alfalfa stems for conversion to ethanol .  Alfalfa has the potential to serve a 

bioenergy crop in rotation with corn.  It adds nitrogen and organic carbon back to the soil, 

enhances the next corn yields by 5-10%, and the leaves are easily fractionated and marketed for 

animal feed.  Information on conversion of alfalfa stems is lacking from the literature.  Alfalfa 

was converted at the laboratory scale with an ethanol yield of 204-241 liters per ton using a 

commercially feasible ammonium pretreatment and a NCAUR developed yeast strain.  

Furthermore, new alfalfa lines, commercial development, with altered lignin composition were 

evaluated for their ability to enhance conversion yields.  The results showed that the COMT 

genotype improved both sugar and ethanol yields.  Finally, 112 alfalfa samples were screened for 

ethanol yields; ethanol yields were poorly correlated with lignin contents, indicating that other 

targets might be needed from improving alfalfa stem conversion quality.  This work was the 

subject of two invited presentations – sponsored by the National Alfalfa and Forage Association 

and Consortium for Alfalfa Improvement, one invited departmental seminar at Toledo University 

(Department of Chemical Engineering, Toledo, OH), a poster presentation, and one submitted 

publication.      

5. Select pretreatment methodology for converting reed canary grass into ethanol.  Reed 

canary grass (RCG) is grown for forage in Northern United States and is being investigated as a 

bioenergy crop by ARS researchers (Madison, WI).  Three different pretreatments were 

evaluated for RCG conversion and dilute-ammonium was selected as the most promising.  

Pretreatment conditions were optimized, evaluated on biomass collected at two different harvest 



maturities, and converted to ethanol using a xylose-fermenting yeast strain.  The final ethanol 

yield was the highest conversion efficiency ever reported for this biomass.  The work is the 

subject of an invited peer-reviewed paper to be published in a special journal issue published by 

Oxford. 

6. Determined the effects of ear rot damaged kernels upon corn conversion to ethanol and 

distillers grains.  Stenocarpella is a leading cause of corn ear rot within the Midwest and is 

increasing in prevalence.  Despite the rapid growth in corn ethanol production, nothing is known 

regarding the effect of processing infected kernels into ethanol.  This work led to some important 

conclusions.  Corn ethanol yield was unaffected.  However, the animal feed co-produced with 

the corn ethanol (distillers’ dried grains with solubles) was altered; most significantly it was 

lowered in oil content.  Stenocaprella infected corn is not considered a risk for feeding to 

production animals.  Therefore, Stenocarpella infected corn will not alter ethanol yields but may 

lower DDGS oil contents and, therefore, its energy content.  The work was the subject of two 

invited oral presentations, invited proceedings, and a submitted manuscript. 

7. Analyze switchgrass samples for fermentation yields to ethanol with the goal of selecting 

superior cultivars for conversion.  We have analyzed 100+ switchgrass samples for conversion 

to ethanol.  This data has been used to develop a method for measuring ethanol yield using near-

infrared spectroscopy (NIR) by our collaborators.  This method is directly being used by our 

ARS plant breeders to improve switchgrass conversion.  The method has also been adopted by an 

official NIR user group and distributed to multiple laboratories.  We have also worked to screen 

switchgrass samples from a traditional switchgrass breeding program demonstrating that this 

method is effective for improving biomass quality.  This work led the important conclusion that 

analyzing fractionated stems led to different results than using whole biomass. 

8. Develop an integrated process for converting switchgrass into ethanol.  Dilute-ammonium 

hydroxide has been successfully developed as a pretreatment process for switchgrass.  Pretreated 

switchgrass samples were evaluated for conversion to sugars following enzymatic digestion and 

to ethanol using a combination of enzymes and an in-house xylose-fermenting S. cerevisiae.  

Glucose and ethanol yields were up to 94.2 and 82.9% of maximum ethanol.  Currently an 

improved pretreatment process is being developed that reduces water usage by 400% and 

reaction temperature from 180°C to 110°C.  It is envisioned that this pretreatment will be 

suitable for distributed processing. 

9. Begin to analyze lipid producing yeast for the next project plan.  A convenient and rapid 

chemical spectrophotometer method has been adapted for measuring lipid contents in yeast.  This 

method is being shared with Dr. Slininger.  Yeasts from the culture collection have also been 

screened for their ability to produce lipids from glucose and two selected for further study on 

biomass hydrolysates.  This work is directed towards the next project plan to add an element for 

“drop in fuels”.  A method to selectively isolate yeast from corn steep liquor failed but resulted 

in yeast isolates that will be shared with Dr. Hector. One of identified yeasts form the culture 

collection was submitted and accepted by the patent committee as a patent proposal (PI Dr. 

Slininger).  We also presented the data as a poster at a technical meeting. 

10. Analyze Napier grass fermentation data.  Approximately 100 Napier plant samples have been 

ranked for ethanol yield using our single-bottle dilute acid pretreatment and simultaneous 

saccharification and fermentation assay.  The protocol was modified to extract soluble sugars 

prior to pretreatment and to analyze the leaves and stems separately.  The results demonstrated 

that stems were over 50% more resistant to enzymatic conversion of cellulose compared to the 

leaves.   This suggests that a more accurate screen would focus on stem material.   



11. Began developing (expected) low capital cost moist ammonium pretreatment for 

switchgrass and Napier grass.  In particular, field grown Napier grass samples were pretreated 

with ammonia at 20% at 110°C for 2 days and 40% moisture.  Glucose and xylose enzymatic 

conversion efficiencies were 59– 93% glucose and 53-61% monomeric xylose.  We envision that 

this technology can be introduced at the distributed farm level and perhaps compressed for 

convenient shipment to centralized refineries. 

12. Improving pennycress for bioenergy. Thlaspi arvense (pennycress) germplasm was improved 

from 2% non-dormancy to 87% non-dormancy through 3 generations of selection pressure in a 

growth chamber. Seed for this selection is now being seed increased for a field plot 

evaluations.  One of the main challenges with the domestication of pennycress is the post-harvest 

maturation requirement (dormancy).  This dormancy has an initial period of 3 months and full 

non-dormancy of seed requires 12 months of storage.  Because of this dormancy, pennycress can 

place seed within the soil profile for many years rather than immediately germinate and die 

under the summer canopy which would out-compete it.  Secondly, non-dormant seed will allow 

commercial planting of seed in the first growing season post-harvest rather than a 15 month 

storage cycle which is now required before planting. 

 

Funded Bioenergy Grants 

1. Breeding and selection of napiergrass (Pennisetum purpureum) for conversion to biofuels.  2010-

2015 with BP Biofuels North America, LLC ($48,125).   

2. Fermentation of dry fractionated grits (with different germ amount) for dry grind ethanol 

production.  2012-2014 with Gevo, Inc. and cooperate research agreement with Dr. Vijay Singh, 

University of Illinois ($12,000).   

3. Sustainable production and distribution of bioenergy for the Central USA.  2011-2014 with Iowa 

State, NIFA Coordinated Agricultural Project (CAP) Grant, supported by Agriculture and Food 

Research Initiative, USDA National Institute of Food and Agriculture ($25,000,000 total budget) 

($500,000).   

4. Distribution and maintenance of calibration for chemical composition and conversion quality of 

switchgrass.  Near Infrared Spectroscopy Consortium (NIRSC).  (Non-funded CRADA). 

5. Accelerated Commercial Development of Hydrotreated Renewable Jet Fuel (HRJ) from 

Redesigned Oilseed Feedstocks Supply Chains, NIFA, 2012-2016, PI: T. Isbell $6,998,790. 
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Project Title: Multifunctional Farms and Landscapes to Enhance Ecosystem Services 
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Accomplishments 

Potential for biofuel production from Northeastern CRP lands.  Concerns about finding 

sufficient land for biofuel production has experts eyeing marginal croplands that have been 

placed in the Conservation Reserve Program (CRP). An extensive study by ARS scientists of 

grassland sites across major Northeastern ecoregions determined the effects plant species 

composition, diversity, above-ground biomass, and chemical composition had on potential 

biofuel yield. This study showed that CRP lands with a high proportion of native warm-season 

prairie grasses have the potential to produce more than 600 gallons of ethanol per acre while still 

maintaining the ecological benefits of grasslands. 

 

Switchgrass still productive after 20 years of management.  Switchgrass, a native warm-

season perennial grass, has received extraordinary attention as a candidate cellulosic bioenergy 

crop. Despite being native, there is little information on its long-term (>10 years) persistence and 

performance. USDA-ARS scientists in University Park, PA measured the biomass yields and 

plant density of experimental switchgrass germplasm and the standard cultivar Cave-in-Rock 

after 20 years of management. Biomass yields of all switchgrasses were stable and stand density 

was relative high after 20 years demonstrating the long-term sustainability of switchgrass as a 

bioenergy crop. These are the first long-term data on the experimental germplasm (since released 

as the cultivars BoMaster and Peformer by ARS in Raleigh, NC) and indicate that southerly 

adapted lowland cultivars can provide diversity in cultivar choices for switchgrass bioenergy 

production in the northeastern U.S. (Sanderson, 2010). BoMaster and Performer are now 

marketed by Ernst Conservation Seeds in Meadville, Pennsylvania. 

 

Carbon sequestration potential of a switchgrass bioenergy crop. Switchgrass is an important 

bioenergy crop with the potential to provide a reliable supply of renewable energy while also 

removing carbon dioxide from the atmosphere and sequestering it in the soil. ARS scientists at 

University Park monitored biomass production and carbon dioxide fluxes during the first four 

years following switchgrass establishment. Averaged over the first four years of production, this 

switchgrass field was a net sink of 142 g CO2 m-2 yr-1 (39 g C m-2 yr-1). Photosynthetic C 

uptake, ecosystem respiration and evapotranspiration were all lower than results commonly 

observed in the Midwest, primarily due to lower growing-season temperature and lower 

available solar radiation (Skinner and Adler, 2010). In addition to their primary function as a 

source of renewable energy, switchgrass bioenergy crops in the northeastern USA can sequester 

carbon dioxide during, at least, the first few years following establishment. 

 

Switchgrass establishment date and weed control method affect yield. Controlling weeds is 

important for accelerating biomass production from switchgrass, however, since it is a new 

bioenergy crop, few chemical weed management options are available. We tested both approved 

and new chemicals and establishment time as methods to control weeds. Agricultural Research 

Service (ARS) and Penn State University scientists found that when a combination of new and 

approved chemicals were used to control weeds, the earlier seeding date yielded more biomass. 

However, with a later seeding date, when weed pressure was lower, all treatment methods were 



equally effective. This study highlights the importance of identifying new weed management 

strategies to maximize the yields of switchgrass. 

 

GHG mitigation strategies for bioenergy feedstock production. State and federal regulations 

reward innovation for improvements in the life cycle greenhouse gas (GHG) emissions of the 

fuel pathway and the type of feedstock chosen for conversion to biofuel. However, there is not an 

incentive strategy in place to reward the further reduction of GHG emissions from production of 

a particular feedstock. Agricultural Research Service (ARS), National Renewable Energy 

Laboratory, Drexel University, and DuPont scientists reviewed and analyzed data from GHG life 

cycle assessments, demonstrating that feedstock production can contribute more than 50% of the 

total GHG emissions. Instead of tracking all the components of life cycle GHG emissions in 

feedstock production, which would be overwhelming, we identified the most important 

components contributing to GHG emissions which have potential for mitigation, N fertilizer 

material, N2O emissions, and tillage impact on soil carbon. This study provides a practical path 

forward to capture further reductions in life cycle GHG emissions by adopting the identified 

mitigation strategies. 

 

Savings achieved when displacing fuel oil with densified switchgrass. Many studies focus on 

quantifying the life cycle greenhouse gas (GHG) emissions of biofuel use without considering 

the economic implications. Given that biomass is a limited resource, we consider both in 

evaluating its displacement of fuel oil, natural gas, and coal. Agricultural Research Service 

(ARS), Drexel University, and Penn State University scientists found that switchgrass 1) was a 

cheaper fuel than fuel oil (could save consumers in NE US $2.3 – $3.9 billion annually), 2) 

displaces more than twice as much petroleum when replacing fuel oil compared with gasoline, 

and 3) is a cheaper GHG mitigation strategy when it replaces fuel oil rather than electricity in the 

NE US (reduces GHGs at a cost savings of $10 – 11.6 billion annually). This study highlights the 

importance of explicitly targeting GHG reductions and petroleum offsets so biomass is not 

distributed towards more expensive options, such as the electricity sectors as with RPS 

legislations. 

 

Reducing the carbon footprint of cellulosic ethanol. After producing ethanol from crop 

residues such as corn stover and straw, a slowly decomposing byproduct remains which is 

typically burned for energy recovery, but harvesting crop residues can result in decreased crop 

yields and soil carbon levels. Agricultural Research Service (ARS) and Drexel University 

scientists compared the current practice of burning this residue, to applying it back to the land. 

They found that although most studies have recommended burning this material to generate 

electricity for the biorefinery, applying it to the land instead resulted in ethanol with the lowest 

greenhouse gas footprint and could be cheaper for farmers and the biorefinery. This finding 

could help the industry evaluate the different markets for byproducts produced at the biorefinery, 

considering both the economic and environmental impacts. 
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2. 2008-2013. USDOE Sun Grant Initiative. Regional Biomass Feedstock Partnership – Corn 

Stover Residue Removal. (Co-PI). $230,000.  

3. 2008-2010. US Department of Transportation, Northeast Sun Grant Initiative. Breeding 

Perennial Grasses for Increased Biomass Production on Marginal Land. (Co-PI). $79,261. 

4. 2010-2012. Osage Bio Energy, LLC. Spatial analysis of soil carbon, N2O emissions, and 

NO3 leaching in a corn, winter barley, soybean cropping system. (PI). $85,000.  

5. 2010-2013. USDOE Sun Grant Initiative. Role of Conservation Grasslands as Bioenergy 

Feedstock. (PI). $12,000.  

6. 2011-2013. USDA-ARS Post doc “Growing bioenergy crops on marginal lands in the 

Northeast: Tradeoffs between greenhouse gas emission, carbon sequestration, and nitrate 

losses. (Co-PI). $100,000.  

7. 2011-2014. US Department of Transportation, Northeast Sun Grant Initiative. Production and 

life-cycle assessment of switchgrass across the heterogeneous landscape of the Northeast. 

(Co-PI) $147,184.  

8. 2011-2015. USDA-NIFA. Greenhouse gas life cycle analysis of biochar effects on marginal 

land conversion to switchgrass. (Co-PI). $963,539.  

9. 2011-2015. USDA-NIFA. Decision support tool for integrated biofuel greenhouse gas 

emission footprints. (Collaborator). $799,000.  

10. 2012-2016. USDA-NIFA, Biomass Research and Development Initiative. Lignocellulosic 

Biomass Conversion to Infrastructure Compatible Fuels, Products and Power. (Co-PI) 

$7,000,000.  
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Accomplishments:  

Crop residue supply. Crop residues, materials remaining in the field after grain harvest, are a 

promising abundant source of biomass for bioenergy production. However, it is important that 

harvesting crop residues does not harm the environment and is economically feasible for both 

farmers and biorefiners. ARS researchers at Mandan, North Dakota and Morris, Minnesota 

developed a method to determine the prices and amounts of biomass that could be profitably 

supplied to a local biorefinery. This technique identifies specific fields where biomass prices will 

be profitable. Results for a Minnesota biorefinery showed that farmers could begin to profitably 

deliver corn stover at prices above $53 per ton, and that transportation costs result in crop residue 

harvest being concentrated near the biorefinery, concentrating environmental impacts near the 

facility, as well. These results provide farmers and biomass industry with information and an 

analytical method needed to evaluate the economic viability of using crop residues for energy 

production while avoiding negative environmental impacts. 

 

Crop residue harvest economics. The biomass industry and farmers need to know how much 

biomass can be profitably produced, and this includes understanding how harvesting crop residue 

affects future crop production. The costs of producing crop residues can vary between sites with 

different soils, weather, and crop production systems. Data from field research studies at multiple 

locations are available in the publicly accessible REAPnet web site. A tool was built to retrieve 

data from the web site to generate production cost information from field studies in Iowa and 

North Dakota and compare the profitability of crop residue harvest strategies. Results show that 

biomass can be harvested at low removal rates with little short-term impact on crop productivity. 

Results also show that biomass can be harvested at lower costs at the lower harvest rates. 

However, it will be important to monitor longer-term changes to see if grain profitability 

decreases. Results showed that biomass could be profitably produced in the short-term at prices 

in the field of $24-38 per dry ton at the Iowa site, and $13-49 per dry ton at the North Dakota 

site. These results provide farmers and the biomass industry biomass cost information, and 

provide a tool for future use in analyzing biomass production costs and comparing production 

methods at other sites. 

 

Switchgrass water use efficiency. Agricultural use of water has become a great concern in 

western parts of the Great Plains, especially regarding effects of bioenergy crop production on 

water quality and quantity.  ARS scientists at Mandan, ND compared the water use efficiency 

and soil water deficits for switchgrass (a bioenergy grass), western wheatgrass and a western 



wheatgrass-alfalfa mixture (two common forage crops).  Water use efficiency was strongly 

influenced by biomass production and the high productivity of switchgrass resulted in the highest 

water use efficiency.  The water use efficiency of switchgrass was nearly 4 to 5 times that of 

western wheatgrass, which had water use efficiency that was much more variable.  Although 

switchgrass had the highest water use efficiency, it also had the greatest soil water deficit. This 

research suggests that switchgrass is a productive bioenergy crop for the drier areas of the 

northern Great Plains but its greater depletion of soil water may be an issue in a multi-year 

drought or if switchgrass is used in annual crop rotation. 

 

Developing more efficient methods to collect round bales in-field for transporting to 

biomass processing. Often biomass logistics are considered to be a rather simple point-to-point 

transportation of material.  However, often biomass is harvested in large round bales which are 

dispersed over a large area.  Therefore, a series of different bale layouts and equipment were 

evaluated to determine the most efficient way to aggregate bales for transport.  Field shape, 

swath width, biomass yield and randomness of bale layout did not impact aggregation logistics 

but area and number of bales handled had significant impacts.  Use of additional equipment and 

loaders handling more bales increased efficiency. A self-loading bale picker was the highest 

ranked method while a central grouping of bales was the lowest ranked method. 

 

Collaborative research helps identify promising technologies to process biofuel feedstocks. 

Perennial grasses and corn stalks can supply abundant lignocellulosic feedstock in the northern 

Great Plains of the U.S. There is a need to understand the mechanical properties of these crops 

for better handling and processing of biomass feedstocks in bioprocessing industries. Ultimate 

shear stresses were not statistically different for big bluestem, corn stalk, and intermediate 

wheatgrass, with values of 7.33, 8.53 and 6.23 MPa, respectively, which were less than 

switchgrass at 13.39 MPa (p < 0.05). Corn stalk had the greatest ultimate tensile stress of 69.30 

MPa, followed by switchgrass, big bluestem, and intermediate wheatgrass. Based on these 

results, shear-dominant size-reduction devices (e.g., knife mills and chippers) should be more 

energy efficient, and this energy efficiency should be taken advantage of when designing size-

reduction devices. 

Use of digital image analysis to identify different stem components of biomass. Different 

stem components, such as nodes and internodes, of perennial biomass feedstocks have different 

chemical composition.  Therefore, separating them into ‘segregated processing’ channels could 

lead to better handling, more efficient processing and higher-value products generation.  

Differences between nodes and internodes can be visually identified so a digital image analysis 

should be possible.  A MATLAB algorithm was developed to help identify nodes and internodes 

in chopped stems of big bluestem, switchgrass and corn stalks.  A best feature was identified that 

could identify nodes and internodes with a 99.9% accuracy.  This image processing method can 

be supporting software for a hardware system that would separate nodes and internodes into 

different processing channels. 
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